Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3.

نویسندگان

  • Yanfei Ruan
  • Marco Denegri
  • Nian Liu
  • Tiziana Bachetti
  • Morena Seregni
  • Stefano Morotti
  • Stefano Severi
  • Carlo Napolitano
  • Silvia G Priori
چکیده

RATIONALE Sodium channel blockers are used as gene-specific treatments in long-QT syndrome type 3, which is caused by mutations in the sodium channel gene (SCN5A). Response to treatment is influenced by biophysical properties of mutations. OBJECTIVE We sought to investigate the unexpected deleterious effect of mexiletine in a mutation combining gain-of- function and trafficking abnormalities. METHODS AND RESULTS A long-QT syndrome type 3 child experienced paradoxical QT prolongation and worsening of arrhythmias after mexiletine treatment. The SCN5A mutation F1473S expressed in HEK293 cells presented a right-ward shift of steady-state inactivation, enlarged window current, and huge sustained sodium current. Unexpectedly, it also reduced the peak sodium current by 80%. Immunostaining showed that mutant Nav1.5 is retained in the cytoplasm. Incubation with 10 micromol/L mexiletine rescued the trafficking defect of F1473S, causing a significant increase in peak current, whereas sustained current was unchanged. Using a Markovian model of the Na channel and a model of human ventricular action potential, we showed that simulated exposure of F1473S to mexiletine paradoxically increased action potential duration, mimicking QT prolongation seen in the index patient on mexiletine treatment. CONCLUSIONS Sodium channel blockers are largely used to shorten QT intervals in carriers of SCN5A mutations. We provided evidence that these agents may facilitate trafficking of mutant proteins, thus exacerbating QT prolongation. These data suggest that caution should be used when recommending this class of drugs to carriers of mutations with undefined electrophysiological properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes.

BACKGROUND Mutations in the cardiac sodium (Na) channel gene (SCN5A) give rise to the congenital long-QT syndrome (LQT3) and the Brugada syndrome. Na channel blockade by antiarrhythmic drugs improves the QT interval prolongation in LQT3 but worsens the Brugada syndrome ST-segment elevation. Although Na channel blockade has been proposed as a treatment for LQT3, flecainide also evokes "Brugada-l...

متن کامل

Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel.

BACKGROUND A heritable form of the long-QT syndrome (LQT3) has been linked to mutations in the cardiac sodium channel gene (SCN5A). Recently, a sporadic SCN5A mutation was identified in a Japanese girl afflicted with the long-QT syndrome. In contrast to the heritable mutations, this externally positioned domain IV, S4 mutation (R1623Q) neutralized a charged residue that is critically involved i...

متن کامل

Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A.

BACKGROUND Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right precordial leads of the electrocardiogram. METHODS AND RESULTS In a Danish family suffering from l...

متن کامل

Novel frameshift mutation in the KCNQ1 gene responsible for Jervell and Lange-Nielsen syndrome

Objective(s): Jervell and Lange–Nielsen syndrome is an autosomal recessive disorder caused by mutations in KCNQ1 or KCNE1 genes. The disease is characterized by sensorineural hearing loss and long QT syndrome. Methods: Here we present a 3.5-year-old female patient, an offspring of consanguineous marriage, who had a history of recurrent syncope and congenital sensorineural deafness. The patient ...

متن کامل

Identification of a Novel KCNQ1 Frameshift Mutation and Review of the Literature among Iranian Long QT Families

Background: Long QT syndrome (LQTS) is characterized by the prolongation of QT interval, which results in syncope and sudden cardiac death in young people. KCNQ1 is the most common gene responsible for this syndrome. Methods: Molecular investigation was performed by DNA Sanger sequencing in Iranian families with a history of syncope. In silico examinations were performed for predicting the path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 106 8  شماره 

صفحات  -

تاریخ انتشار 2010